Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(20): 5590-5608, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37728237

RESUMO

Mesophotic coral ecosystems (MCEs) are tropical reefs found at depths of ~30-150 m, below the region most heavily impacted by heat stress and other disturbances. Hence, MCEs may serve as potential refugia for threatened shallow reefs, but they also harbour depth-endemic fauna distinct from shallow reefs. Previous studies have characterized biodiversity patterns along depth gradients, but focussed primarily on conspicuous taxa (fishes, corals, etc.). Environmental DNA (eDNA) metabarcoding offers a more holistic approach to assess biodiversity patterns across the tree of life. Here, we use three metabarcoding assays targeting fishes (16S rRNA), eukaryotes (18S rDNA) and metazoans (COI) to assess biodiversity change from the surface to ~90 m depth across 15-m intervals at three sites within the Hawaiian Archipelago. We observed significant community differences between most depth zones, with distinct zonation centred at 45-60 m for eukaryotes and metazoans, but not for fishes. This finding may be attributable to the higher mobility of reef fishes, although methodological limitations are likely a contributing factor. The possibility for MCEs to serve as refugia is not excluded for fishes, but invertebrate communities >45 m are distinct, indicating limited connectivity for the majority of reef fauna. This study provides a new approach for surveying biodiversity on MCEs, revealing patterns in a much broader context than the limited-taxon studies that comprise the bulk of our present knowledge.


Assuntos
Antozoários , DNA Ambiental , Animais , Recifes de Corais , Ecossistema , DNA Ambiental/genética , Engenharia Sanitária , RNA Ribossômico 16S , Biodiversidade , Antozoários/genética , Peixes/genética
2.
J Fish Biol ; 102(3): 581-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564830

RESUMO

The gap between spawning and settlement location of marine fishes, where the larvae occupy an oceanic phase, is a great mystery in both natural history and conservation. Recent genomic approaches provide some resolution, especially in linking parent to offspring with assays of nucleotide polymorphisms. Here, the authors applied this method to the endemic Hawaiian convict tang (Acanthurus triostegus sandvicensis), a surgeonfish with a long pelagic larval stage of c. 54-77 days. They collected 606 adults and 607 juveniles from 23 locations around the island of O'ahu, Hawai'i. Based on 399 single nucleotide polymorphisms, the authors assigned 68 of these juveniles back to a parent (11.2% assignment rate). Each side of the island showed significant population differentiation, with higher levels in the west and north. The west and north sides of the island also had little evidence of recruitment, which may be due to westerly currents in the region or an artefact of uneven sampling. In contrast, the majority of juveniles (94%) sampled along the eastern shore originated on that side of the island, primarily within semi-enclosed Kane'ohe Bay. Nearly half of the juveniles assigned to parents were found in the southern part of Kane'ohe Bay, with local settlement likely facilitated by extended water residence time. Several instances of self-recruitment, when juveniles return to their natal location, were observed along the eastern and southern shores. Cumulatively, these findings indicate that most dispersal is between adjacent regions on the eastern and southern shores. Regional management efforts for Acanthurus triostegus and possibly other reef fishes will be effective only with collaboration among adjacent coastal communities, consistent with the traditional moku system of native Hawaiian resource management.


Assuntos
Perciformes , Animais , Larva/genética , Havaí , Perciformes/genética , Peixes , Genômica
3.
PeerJ ; 10: e13790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959477

RESUMO

DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci (e.g., COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g., ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Código de Barras de DNA Taxonômico/métodos , Peixes , Biodiversidade , DNA
4.
PeerJ ; 8: e8852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231888

RESUMO

Included among the currently recognized 23 species of combtooth blennies of the genus Cirripectes (Blenniiformes: Blenniidae) of the Indo-Pacific are the Hawaiian endemic C. vanderbilti, and the widespread C. variolosus. During the course of a phylogeographic study of these species, a third species was detected, herein described as C. matatakaro. The new species is distinguished primarily by the configuration of the pore structures posterior to the lateral centers of the transverse row of nuchal cirri in addition to 12 meristic characters and nine morphometric characters documented across 72 specimens and ∼4.2% divergence in mtDNA cytochrome oxidase subunit I. The new species is currently known only from the Marquesas, Gambier, Pitcairns, Tuamotus, and Australs in the South Pacific, and the Northern Line Islands and possibly Johnston Atoll south of Hawai'i. Previous researchers speculated that the geographically widespread C. variolosus was included in an unresolved trichotomy with the Hawaiian endemic and other species based on a morphological phylogeny. Our molecular-phylogenetic analysis resolves many of the previously unresolved relationships within the genus and reveals C. matatakaro as the sister lineage to the Hawaiian C. vanderbilti. The restricted geographic distribution of Cirripectes matatakaro combines with its status as sister to C. vanderbilti to indicate a southern pathway of colonization into Hawai'i.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...